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Chapter 1

Partitioning and Load
Balancing for Emerging
Parallel Applications and
Architectures

Karen D. Devine†, Erik G. Boman†, and George Karypis‡

1.1 Introduction

An important component of parallel scientific computing is partitioning – the assign-
ment of work to processors. This assignment occurs at the start of a computation
(“static” partitioning). Often, reassignment also is done during a computation (“dy-
namic” partitioning) to redistribute work as the computation changes. The goal of
partitioning is to assign work to processors in a way that minimizes total solution
time. In general, this goal is pursued by equally distributing work to processors
(i.e., “load balancing”) while attempting to minimize interprocessor communica-
tion within the simulation. While distinctions can be made between “partitioning”
and “load balancing,” in this paper, we use the terms interchangeably.

A wealth of partitioning research exists for mesh-based partial differential
equation (PDE) solvers (e.g., finite volume and finite element methods) and their
sparse linear solvers. Here, graph-based partitioners have become the tools of choice,
due to their excellent results for these applications and the availability of graph-
partitioning software [44, 54, 56, 77, 84, 102]. Conceptually simpler geometric meth-
ods have proven to be highly effective for particle simulations, while providing rea-
sonably good decompositions for mesh-based solvers. Software toolkits containing
several different algorithms enable developers to easily compare methods to de-
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2 Chapter 1. Partitioning and Load Balancing

termine their effectiveness in applications [24, 26, 61]. Prior efforts have focused
primarily on partitioning for homogeneous computing systems, where computing
power and communication costs are roughly uniform.

Wider acceptance of parallel computing has lead to an explosion of new par-
allel applications. Electronic circuit simulations, linear programming, materials
modeling, crash simulations, and data mining are all adopting parallel computing
to solve larger problems in less time. And the parallel architectures they use have
evolved far from uniform arrays of multiprocessors. While homogeneous, dedicated
parallel computers can offer the highest performance, their cost often is prohibitive.
Instead, parallel computing is done on everything from networks of workstations to
clusters of shared-memory processors to grid computers. These new applications
and architectures have reached the limit of standard partitioners’ effectiveness; they
are driving development of new algorithms and software for partitioning.

This paper surveys current research in partitioning and dynamic load bal-
ancing, with special emphasis on work presented at the 2004 SIAM Conference on
Parallel Processing for Scientific Computing. “Traditional” load-balancing meth-
ods are summarized in §1.2. In §1.3, we describe several non-traditional appli-
cations along with effective partitioning strategies for them. Some non-traditional
approaches to load balancing are described in §1.4. In §1.5, we describe partitioning
goals that reach beyond typical load-balancing objectives. And in §1.6, we address
load-balancing issues for non-traditional architectures.

1.2 Traditional Approaches

The partitioning strategy that is, perhaps, most familiar to application developers is
graph partitioning. In graph partitioning, an application’s work is represented by a
graph G(V,E). The set of vertices V consists of objects (e.g., elements, nodes) to be
assigned to processors. The set of edges E describes relationships between vertices
in V ; an edge eij exists in E if vertices i and j share information that would have to
be communicated if i and j were assigned to different processors. Both vertices and
edges may have weights reflecting their computational and communication cost,
respectively. The goal, then, is to partition vertices so that each processor has
roughly equal total vertex weight while minimizing the total weight of edges “cut” by
subdomain boundaries. (Several alternatives to the edge-cut metric, e.g., reducing
the number of boundary vertices, have been proposed [42, 43].)

Many graph-partitioning algorithms have been developed. Recursive Spectral
Bisection [83, 93] splits vertices into groups based on eigenvectors of the Lapla-
cian matrix associated with the graph. While effective, this strategy is slow due
to the eigenvector computation. As an alternative, multilevel graph partition-
ers [13, 45, 56] reduce the graph to smaller, representative graphs that can be
partitioned easily; the partitions are then projected to the original graph, with
local refinements (usually based on the Kernighan-Lin method [57]) reducing im-
balance and cut-edge weight at each level. Multilevel methods form the core of
serial [44, 56, 77, 84, 102] and parallel [54, 102] graph-partitioning libraries. Diffu-
sive graph partitioners [22, 46, 59, 107] operate more locally than multilevel graph
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1.2. Traditional Approaches 3

partitioners. Diffusive partitioners transfer work from heavily loaded processors to
their more lightly loaded neighbors; “neighbors” are defined either by the network
in the parallel computer or by a processor graph induced by the application’s data
dependencies. Diffusive methods are faster than multilevel methods, but can require
several iterations to achieve global balance. Diffusive partitioners are also more “in-
cremental” than other graph partitioners; that is, small changes in processor work
loads result in only small changes in the decomposition. This incrementality is
important in dynamic load balancing, where the cost to move data to a new decom-
position must be kept low. Graph partitioners allowing multiple weights per vertex
(i.e., multiconstraint or multiphase partitioning) [55, 89, 104] or edge (i.e., multiob-
jective partitioning) [87] have been applied to a variety of multiphase simulations.

Geometric partitioning methods can be effective alternatives to graph parti-
tioners. Using only objects’ weights and physical coordinates, they assign equal
object weight to processors while grouping physically close objects within subdo-
mains. While they tend to produce partitions with higher communication costs
than graph partitioning, they run faster and, in most cases, are implicitly incre-
mental. Moreover, applications that lack natural graph connectivity (e.g., particle
methods) can easily use geometric partitioners.

Geometric recursive bisection uses a cutting plane to divide geometric space
into two sets with equal object weight (Figure 1.1). The resulting subdomains are
divided recursively in the same manner, until the number of subdomains equals
the number of desired partitions. (This algorithm is easily extended from pow-
ers of two to arbitrary numbers of partitions.) Variants of geometric recursive
bisection differ primarily in their choice of cutting plane. Recursive Coordinate Bi-
section (RCB) [6] chooses planes orthogonal to coordinate axes. Recursive Inertial
Bisection (RIB) [93, 96] uses planes orthogonal to “long directions” in the geometry;
these long directions are the principal axes of inertia. (Note that RIB is not incre-
mental.) Unbalanced Recursive Bisection (URB) [49] generates subdomains with
lower aspect ratio (and, by implication, lower communication costs) by dividing the
geometry in half and then assigning a number of processors to each half that is
proportional to the work in that half.

Another geometric method, space-filling curve (SFC) partitioning, uses SFCs
to map objects from their position in three-dimensional space to a linear ordering.
Objects are assigned a “key” (typically an integer or a real number) representing
the point on an SFC that is closest to the object. Sorting the keys creates the linear
ordering of the objects. This linear ordering is then cut into equally weighted pieces
to be assigned to partitions (Figure 1.2). SFC partitioners can be implemented in a
number of ways. Different curves (e.g., Hilbert, Morton) may be used. The sorting
step can be replaced by binning strategies [27]. An explicit octree representation
of the SFC can be built [33, 64]. Topological connectivity can be used instead of
coordinates to generate the SFC [66, 67]. In each approach, however, the speed of
the algorithm and quality of the resulting decomposition is comparable to RCB.
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Figure 1.1. Cutting planes (left) and associated cut tree (right) for geo-
metric recursive bisection. Dots are objects to be balanced; cuts are shown with dark
lines and tree nodes.
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Figure 1.2. SFC partitioning (left) and box-assignment search procedure
(right). Objects (dots) are ordered along the SFC (dotted line). Partitions are
indicated by shading. The box for box-assignment intersects partitions 0 and 2.

1.3 Beyond traditional applications

Traditional partitioners have been applied with great success to a variety of ap-
plications. Multilevel graph partitioning is highly effective for finite element and
finite volume methods (where mesh nodes or cells are divided among processors).
Diffusive graph partitioners and incremental geometric methods are widely used in
dynamic computations such as adaptive finite element methods [6, 25, 31, 76, 86].
The physical locality of objects provided by geometric partitioners has been ex-
ploited in particle methods [82, 106].

Some new parallel applications can use enhancements of traditional parti-
tioners with success. Contact detection for crash and impact simulations can use
geometric and/or graph-based partitioners, as long as additional functionality for
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1.3. Beyond traditional applications 5

finding overlaps of the geometry with given regions of space is supported. Data-
mining applications often use graph partitioners to identify clusters within data sets;
the partitioners’ objective functions are modified to obtain non-trivial clusters.

Other applications, however, require new partitioning models. These appli-
cations are characterized by higher data connectivity and less homogeneity and
symmetry. For example, circuit and density functional theory simulations can have
much less data locality than finite element methods. Graph-based models do not
sufficiently represent the data relationships in these applications.

In this section, we describe some emerging parallel applications and appro-
priate partitioning solutions for them. We present techniques used for partitioning
contact detection simulations. We survey application of graph-based partitioners
to clustering algorithms for data mining. And we discuss hypergraph partitioning,
an effective alternative to graph partitioning for less structured applications.

1.3.1 Partitioning for Parallel Contact/Impact Computations

A large class of scientific simulations, especially those performed in the context
of computational structural mechanics, involve meshes that come in contact with
each other. Examples include simulations of vehicle crashes, deformations, and
projectile-target penetration. In these simulations, each iteration consists of two
phases. During the first phase, traditional finite difference/element/volume meth-
ods compute forces on elements throughout the problem domain. In the second
phase, a search determines which surface elements have come in contact with and/or
penetrated other elements; the positions of the affected elements are corrected, el-
ements are deformed, and the simulation progresses to the next iteration.

The actual contact detection is usually performed in two steps. The first step,
global search, identifies pairs of surface elements that are close enough to potentially
be in contact with each other. In the second step, local search, the exact locations
of the contacts (if any) between these candidate surfaces are computed.

In global search, surface elements are usually represented by bounding boxes;
two surface elements intersect only if their bounding boxes intersect. In parallel
global search, surface elements first must be sent to processors owning elements
with which they have potential interactions. Thus, computing the set of processors
whose subdomains intersect a bounding box (sometimes called “box assignment”)
is a key operation in parallel contact detection.

Plimpton et al. developed a parallel contact detection algorithm that uses
different decompositions for the computation of element forces (phase one) and the
contact search (phase two) [82]. For phase one, they apply a traditional multilevel
graph partitioner to all elements of the mesh. Recursive coordinate bisection (RCB)
is used in phase two to evenly distribute only the surface elements. Between phases,
data is mapped between the two decompositions, requiring communication; how-
ever, using two decompositions ensures that the overall computation is balanced
and each phase is as efficient as possible. Because RCB uses geometric coordinates,
potentially intersecting surfaces are likely to be assigned to the same processor,
reducing communication during global search. Moreover, the box-assignment oper-
ation is very fast and efficient. The RCB decomposition is described fully by the
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6 Chapter 1. Partitioning and Load Balancing

tree of cutting planes used for partitioning (Figure 1.1). The planes are stored on
each processor, and the tree of cuts is traversed to determine intersections of the
bounding boxes with the processor subdomains.

The use of a geometric method for the surface-element decomposition has been
extended to space-filling curve (SFC) partitioners, due in part to their slightly faster
decomposition times. Like RCB, SFC decompositions can be completely described
by the cuts used to partition the linear ordering of objects. Box-assignment for SFC
decompositions, however, is more difficult than for RCB, since SFC partitions are
not regular rectangular regions. To overcome this difficulty, Heaphy et al. [27, 41]
developed an algorithm based on techniques for database query [58, 68]. A search
routine finds each point along the SFC at which the SFC enters the bounding box
(Figure 1.2); binary searches through the cuts map each entry point to the processor
owning the portion of the SFC containing the point.

Multiconstraint partitioning can be used in contact detection. Each element is
assigned two weights — one for force calculations (phase one) and a second for con-
tact computations (phase two). A single decomposition that balances both weights
is computed. This approach balances computation in both phases, while elimi-
nating the communication between phases that is needed in the two-decomposition
approach. However, solving the multiconstraint problem introduces new challenges.

Multiconstraint or multiphase graph partitioners [55, 104] can be applied nat-
urally to obtain a single decomposition that is balanced with respect to both the
force and contact phases. These partitioners attempt to minimize interprocessor
communication costs subject to the constraint that each component of the load is
balanced. Difficulty arises, however, in the box-assignment operation, as the subdo-
mains generated by graph partitioners do not have geometric regularity that can be
exploited. One could represent processor subdomains by bounding boxes and com-
pute intersections of the surface-element bounding box with the processor bounding
boxes. However, because the processor bounding boxes are likely to overlap, many
“false positives” can be generated by box assignment; that is, a particular surface
element is said to intersect with a processor, even though none of the processor’s
locally stored elements identify it as a candidate for local search. To address this
problem, Karypis [51] constructs a detailed geometric map of the volume covered by
elements assigned to each subdomain (Figure 1.3). He also modifies the multicon-
straint graph decomposition so that each subdomain can be described by a small
number of disjoint axis-aligned boxes; this improved geometric description reduces
the number of false-positives. The boxes are assembled into a binary tree describing
the entire geometry. Box assignment is then done by traversing the tree, as in RCB;
however, the depth of the tree can be much greater than RCB’s tree.

Boman et al. proposed a multicriteria geometric partitioning method that may
be used for contact problems [12, 27]. Like the multiconstraint graph partitioners,
this method computes one decomposition that is balanced with respect to multiple
phases. Their algorithm, however, uses RCB, allowing box assignment to be done
easily by traversing the tree of cuts (Figure 1.1). Instead of solving a multiconstraint
problem, they solve a multiobjective problem: find as good a balance as possible
with respect to all loads. While good multicriteria RCB decompositions do not
always exist, heuristics are used to generate reasonable decompositions for many
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Figure 1.3. Use of multi-constraint graph partitioning for contact prob-
lems: (a) the 45 contact points are divided into three partitions; (b) the subdomains
are represented geometrically as sets of axis-aligned rectangles; and (c) a decision
tree describing the geometric representation is used for contact search.

problems. In particular, they pursue the simpler objective

min
s

max(g(
∑

i≤s

ai), g(
∑

i>s

ai)),

where ai is the weight vector for object i, and g is a monotonically non-decreasing
function in each component of the input vector; typically g(x) =

∑

j x
p
j with p = 1

or p = 2, or g(x) = ‖x‖ for some norm. This objective function is unimodal with
respect to s; that is, starting with s = 1 and increasing s, the objective decreases,
until at some point the objective starts increasing. That point defines the optimal
bisection value s, and it can be computed efficiently.

1.3.2 Clustering in Data Mining

Advances in information technology have greatly increased the amount of data gen-
erated, collected, and stored in various disciplines. The need to effectively and effi-
ciently analyze these data repositories to transform raw data into information and,
ultimately, knowledge motivated the rapid development of data mining. Data min-
ing combines data analysis techniques from a wide spectrum of disciplines. Among
the most extensively used data mining techniques is clustering, which tries to orga-
nize a large collection of data points into a relatively small number of meaningful,
coherent groups. Clustering has been studied extensively; two recent surveys [40, 48]
offer comprehensive summaries of different applications and algorithms.

One class of clustering algorithms is directly related to graph partitioning;
these algorithms model datasets with graphs and discover clusters by identifying
well-connected subgraphs. Two major categories of graph models exist: similarity-
based models [30] and object-attributed-based models [28, 111]. In a similarity-based
graph, vertices represent data objects, and edges connect objects that are similar
to each other. Edge weights are proportional to the amount of similarity between
objects. Variations of this model include reducing the density of the graph by
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8 Chapter 1. Partitioning and Load Balancing

focusing on only a small number of nearest neighbors of each vertex, and using
hypergraphs to allow set-wise similarity as opposed to pair-wise similarity. Object-
attribute models represent how objects are related to the overall set of attributes.
Relationships between objects and attributes are modeled by a bipartite graph
G(Vo, Va, E), where Vo is the set of vertices representing objects, Va is the set of
vertices representing attributes, and E is the set of edges connecting objects in Vo

with their attributes in Va. This model is applicable when the number of attributes
is very large, but each object has only a small subset of them.

Graph-based clustering approaches can be classified into two categories: direct
and partitioning-based. Direct approaches identify well-connected subgraphs by
looking for connected components within the graph. Different definitions of the
properties of connected components can be used. Some of the most widely used
methods seek connected components that correspond to cliques and employ either
exact or heuristic clique partitioning algorithms [23, 105]. However, this clique-
based formulation is overly restrictive and cannot find large clusters in sparse graph
models. For this reason, much research has focused on finding components that
contain vertices connected by multiple intra-cluster disjoint paths [5, 36, 38, 63, 90,
91, 95, 100, 110]. A drawback of these approaches is that they are computationally
expensive, and, as such, can be applied only to relatively small datasets.

Partitioning-based clustering methods use min-cut graph-partitioning algo-
rithms to decompose the graphs into well-connected components [29, 52, 111]. By
minimizing the total weight of graph edges cut by partition boundaries, they mini-
mize the similarity between clusters, and, thus, tend to maximize the intra-cluster
similarity. Using spectral and multilevel graph partitioners, high quality decom-
positions can be computed reasonably quickly, allowing these methods to scale to
very large datasets. However, the traditional min-cut formulation can admit trivial
solutions in which some (if not most) of the partitions contain a very small number
of vertices. For this reason, most of the recent research has focused on extending the
min-cut objective function so that it accounts for the size of the resulting partitions
and, thus, produces solutions that are better balanced. Examples of effective objec-
tive functions are ratio cut (which scales the weight of cut edges by the number of
vertices in each partition) [37], normalized cut (which scales the weight of cut edges
by the number of edges in each partition) [92], and min-max cut (which scales the
weight of cut edges by the weight of uncut edges in each partition) [29].

1.3.3 Partitioning for Circuits, Nanotechnology, Linear
Programming and more

While graph partitioners have served well in mesh-based PDE simulations, new
simulation areas such as electrical systems, computational biology, linear program-
ming and nanotechnology show their limitations. Critical differences between these
areas and mesh-based PDE simulations include high connectivity, heterogeneity
in topology, and matrices that are structurally non-symmetric or rectangular. A
comparison of a finite element matrix with matrices from circuit and density func-
tional theory (DFT) simulations is shown in Figure 1.4; circuit and DFT matrices
are more dense and less structured than finite element matrices. The structure of
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1.3. Beyond traditional applications 9

(a)

(b)

(c) (d)

Figure 1.4. Comparing the non-zero structure of matrices from (a) a

hexahedral finite element simulation, (b) a digital circuit simulation [39], (c) a

density functional theory simulation [35], and (d) linear programming [69] shows

differences in structure between traditional and emerging applications.

linear programming matrices differs even more; indeed, these matrices are usually

not square. In order to achieve good load balance and low communication in such

applications, accurate models of work and dependency/communication are crucial.

Graph models are often considered the most effective models for mesh-based

PDE simulations. However, the edge-cut metric they use only approximates com-

munication volume. For example, in Figure 1.5 (left), a grid is divided into two

partitions (separated by a dashed line). Grid point A has four edges associated

with it; each edge (drawn as an ellipse) connects A with a neighboring grid point.

Two edges are cut by the partition boundary; however, the actual communication

volume associated with sending A to the neighboring processor is only one grid

point. Nonetheless, countless examples demonstrate graph partitioning’s success in

mesh-based PDE applications where this approximation is often good enough.
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10 Chapter 1. Partitioning and Load Balancing

A A

Figure 1.5. Example of communication metrics in the graph (left) and
hypergraph (right) models. Edges are shown with ellipses; the partition boundary is
the dashed line.

Another limitation of the graph model is the type of systems it can repre-
sent [42]. Because edges in the graph model are non-directional, they imply sym-
metry in all relationships, making them appropriate only for problems represented
by square, structurally symmetric matrices. Structurally non-symmetric systems
A must be represented by a symmetrized model, perhaps A + AT or AT A, adding
new edges to the graph and further skewing the communication metric. While a
directed graph model could be adopted, it would not improve the accuracy of the
communication metric.

Likewise, graph models cannot represent rectangular matrices, such as those
arising in linear programming. Kolda and Hendrickson [43] propose using bipartite
graphs. For an m × n matrix A, vertices mi, i = 1, . . . ,m represent rows, and
vertices nj , j = 1, . . . , n represent columns. Edges eij connecting mi and nj exist
for non-zero matrix entries aij . But as in other graph models, the number of cut
edges only approximates communication volume.

Hypergraph models address many of the drawbacks of graph models. As in
graph models, hypergraph vertices represent the work of a simulation. However,
hypergraph edges (hyperedges) are sets of two or more related vertices. A hyper-
edge can thus represent dependencies between any set of vertices. The number of
hyperedge cuts accurately represents communication volume [16, 18]. In the exam-
ple in Figure 1.5 (right), a single hyperedge (drawn as a circle) including vertex A

and its neighbors is associated with A; this single cut hyperedge accurately reflects
the communication volume associated with A.

Hypergraphs also serve as useful models for sparse matrix computations, as
they accurately represent nonsymmetric and rectangular matrices. For example,
the columns of a rectangular matrix could be represented by the vertices of a hy-
pergraph. Each matrix row would be represented by a hyperedge connecting all
vertices (columns) with non-zero entries in that row. A hypergraph partitioner,
then, would assign columns to processors while attempting to minimize communi-
cation along rows. One could alternatively let vertices represent rows and edges
represent columns to obtain a row-partitioning.
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1.4. Beyond traditional approaches 11

Optimal hypergraph partitioning, like graph partitioning, is NP-hard, but
good heuristic algorithms have been developed. The dominant algorithms are ex-
tensions of the multilevel algorithms for graph partitioning. Hypergraph partition-
ing’s effectiveness has been demonstrated in many areas, including VLSI layout [14],
sparse matrix decompositions [18, 101], and database storage and data mining [21,
75]. Several (serial) hypergraph partitioners are available (e.g., hMETIS [53], Pa-
ToH [18, 17], MLPart [15], Mondriaan [101]), and two parallel hypergraph partition-
ers for large-scale problems are under development: one at the Univ. of London [99]
which targets database models and Markov processes, and another as part of the
Zoltan [11] project for parallel load balancing in scientific computing.

1.4 Beyond traditional approaches

While much partitioning research has focused on the needs of new applications,
older, important applications have not been forgotten. Sparse matrix-vector mul-
tiplication, for example, is a key component of countless numerical algorithms; im-
provements in partitioning strategies for this operation can greatly impact scientific
computing. Similarly, because of the broad use of graph partitioners, algorithms
that compute better graph decompositions can influence a range of applications. In
this section, we discuss a few new approaches to these traditional problems.

1.4.1 Partitioning for sparse matrix-vector multiplication

A common kernel in many numerical algorithms is multiplication of a sparse matrix
by a vector. For example, this operation is the most computationally expensive part
of iterative methods for linear systems and eigensystems. More generally, many data
dependencies in scientific computation can be modeled as hypergraphs, which again
can be represented as (usually sparse) matrices (see §1.3.3). The question is how
to distribute the nonzero matrix entries (and the vector elements) in a way that
minimizes communication cost while maintaining load balance. The sparse case is
much more complicated than the dense case, and is a rich source of combinatorial
problems. This problem has been studied in detail in [17, 18] and in [9, Ch.4].

The standard algorithm for computing u = Av on a parallel computer has four
steps. First, we communicate entries of v to processors that need them. Second,
we compute local contributions of the type

∑

j aijvj for certain i, j and store them
in u. Third, we communicate entries of u. Fourth, we add up partial sums in u.

The simplest matrix distribution is a one-dimensional (1D) decomposition
of either matrix rows or columns. The communication needed for matrix-vector
multiplication with 1D distributions is demonstrated in Figure 1.6. Çatalyürek
and Aykanat [17, 18] realized that this problem can be modeled as a hypergraph
partitioning problem, where, for a row distribution, matrix rows correspond to
vertices and matrix columns correspond to hyperedges, and vice versa for a column
distribution. The communication volume is then exactly proportional to the number
of cut hyperedges in the bisection case; if there are more than two partitions, the
number of partitions covering each hyperedge has to be taken into account. The
1D hypergraph model reduced communication volume by 30–40% on average versus
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Figure 1.6. Row (left) and column (right) distribution of a sparse matrix
for multiplication u = Av. There are only two processors, indicated by dark and light
shading, and communication between them is shown with arrows. In this example,
the communication volume is three words in both cases. (Adapted from [9, Ch.4].)

the graph model for a set of sparse matrices [17, 18].
Two-dimensional (2D) data distributions (i.e., block distributions) are often

better than 1D distributions. Most 2D distributions used are Cartesian; that is, the
matrix is partitioned both along rows and columns in a grid-like fashion and each
processor is assigned the nonzeros within a rectangular block. The Cartesian 2D
distribution is inflexible and good load balance is often difficult to achieve, so varia-
tions like jagged or semi-general block partitioning have been proposed [62, 79, 85].
These schemes first partition a matrix into p1 strips in one direction, and then par-
tition each strip independently in the orthogonal direction into p2 domains, where
p1 × p2 is the total number of desired partitions. Vastenhow and Bisseling have re-
cently suggested a non-Cartesian distribution called Mondriaan [101]. The method
is based on recursive bisection of the matrix into rectangular blocks, but permu-
tations are allowed and the cut directions may vary. Each bisection step is solved
using hypergraph partitioning. Mondriaan distributions often have significantly
lower communication costs than 1D or 2D Cartesian distributions [101].

In the most general distribution, each nonzero (i, j) is assigned to a processor
with no constraints on the shape or connectivity of a partition. (See Figure 1.7 for
an example.) Çatalyürek and Aykanat [16, 19] showed that computing such general
(or fine-grain) distributions with low communication cost can also be modeled as
a hypergraph partitioning problem, but using a different (larger) hypergraph. In
their fine-grain model, each nonzero entry corresponds to a vertex and each row or
column corresponds to a hyperedge. This model accurately reflects communication
volume. Empirical results indicate that partitioning based on the fine-grain model
has communication volume that is lower than 2D Cartesian distributions [19]. The
disadvantage of using such complex data distributions is that the application needs
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Figure 1.7. Irregular matrix distribution with two processors. Communi-
cation between the two processors (shaded dark and light) is indicated with arrows.

to support arbitrary distributions, which is typically not the case.
After a good distribution of the sparse matrix A has been found, vectors u

and v still must be distributed. In the square case, it is often convenient to use the
same distribution, but it is not always necessary. In the rectangular case, the vector
distributions will obviously differ. Bisseling and Meesen [9, 10] have studied this
vector partitioning problem, and suggest that the objective for this phase should
be to balance the communication between processors. Note that a good matrix
(hypergraph) partitioning already ensures that the total communication volume is
small. For computing u = Av, no extra communication is incurred as long as vj is
assigned to a processor that also owns an entry in column j of A, and ui is assigned
to a processor that contains a nonzero in row i. There are many such assignments;
for example, in Figure 1.7, u3, u4, and v5 can all be assigned to either processor. The
vector partitions resulting from different choices for these particular vector entries
are all equally good measured by total communication volume. One therefore has
flexibility (see also Section 1.5.2 on flexibly assignable work) to choose a vector
partitioning that minimizes a secondary objective, such as the largest number of
send and receive operations on any processor. (Similar objectives are used in some
parallel cost models, like the BSP model [9].) Bisseling and Meesen [9, 10] have
proposed a fast heuristic for this problem, a greedy algorithm based on local bounds
for the maximum communication for each processor. It is optimal in the special case
where each matrix column is shared among at most two processors. Their approach
does not attempt to load balance the entries in u and v between processors because
doing so is not important for matrix-vector multiplication.
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1.4.2 Semidefinite programming for graph partitioning

Although multilevel algorithms have proven quite efficient for graph partitioning,
there is ongoing research into algorithms that may give higher quality solutions
(but may also take more computing time). One such algorithm uses semidefinite
programming (SDP).

The graph partitioning problem can be cast as an integer programming prob-
lem. Consider the bisection problem where the vertices of a graph G = (V,E) shall
be partitioned into two approximately equal sets P0 and P1. Let x ∈ {−1, 1}n be
an assignment vector such that xi = −1 if vertex vi ∈ P0 and xi = 1 if it is in P1.
It is easy to see that the number of edges crossing from P0 to P1 is

1

4

∑

(i,j)∈E,i<j

(xi − xj)
2 =

1

4
xT Lx, (1.1)

where L is the Laplacian matrix of the graph G. Minimizing (1.1) while maintaining
load balance is an NP-hard problem. By allowing x to be a vector of any real
numbers, the following relaxation can be solved efficiently:

min
x

1

4
xT Lx (1.2)

subject to xT x = n, (1.3)

xT e = 0. (1.4)

The solution to (1.2) is the eigenvector of L with the second smallest eigenvalue
of L. (The smallest eigenvalue of L is zero with the eigenvector e.) The spectral
partitioning algorithm computes the second eigenvector of L and uses a simple
rounding scheme to obtain a partitioning from x [83].

Over the last decade, much work has been done on semidefinite program-
ming to approximate NP-hard combinatorial problems. SDP can be viewed as a
generalization of linear programming where the unknown variable is a symmetric
semidefinite matrix. SDP can be solved in polynomial time, but current algorithms
require Θ(n3) computations per major iteration and Θ(n2) memory, and, thus, are
quite expensive. One SDP relaxation of the graph partitioning problem is

min
X

1

4
L • X (1.5)

subject to diag(X) = e, (1.6)

X • (eeT ) = 0, (1.7)

X < 0 (X is semidefinite), (1.8)

where X is a matrix and • denotes the element-wise matrix inner product. The
matrix X can be considered a generalization of the vector x in (1.2); each node
in the graph is assigned a vector instead of a real number. We remark that the
SDP (1.5) becomes equivalent to the spectral problem (1.2) if we impose the addi-
tional constraint that rank(X)=1; then X = xxT for x in (1.2). A decomposition
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is derived from the matrix X. Since the SDP is a tighter approximation to the
discrete problem, SDP solutions should produce higher quality partitions than the
spectral algorithm. (Although the continuous SDP solution X will produce a good
objective value, the discrete partitioning induced by X does not necessarily have
a small cut size due to the rounding step, but randomized techniques can be em-
ployed.) The SDP method for graph partitioning has been studied, e.g., in [50, 108].
Oliveira [72] showed that a generalization of graph partitioning, where the vertices
have preference values for belonging to a certain partition, can also be modeled as
a SDP. Since algorithms and software for solving SDP are quite slow, faster ap-
proximate solvers are needed. A promising approach is subspace iteration, in which
X is restricted to lower-dimensional subspaces. Subspace algorithms for SDP are
analogous to Lanczos/Arnoldi or Davidson-type algorithms for eigenvalue problems.
Recent work [72, 73, 74] indicates that such algorithms for SDP graph partitioning
are much faster than full SDP solvers and are competitive with spectral partitioning.

1.5 Beyond traditional models

While the traditional partitioning model (balancing workloads while minimizing in-
terprocessor communication) often minimizes an application’s total run time, there
are applications for which different models or goals are more important. In appli-
cations where the total amount of work in a computation depends on the decom-
position, traditional partitioning strategies are insufficient, as they partition with
respect to a fixed amount of work; these scenarios, are called “complex objectives.”
Another load-balancing issue, recently described by Pınar and Hendrickson [81], is
“flexibly assignable” work; in some cases, even after the data have been distributed,
there is some flexibility to assign work among processors. And for some applica-
tions, the cost to move data from an old decomposition to a new one is so high that
incorporating migration cost into a dynamic load-balancing strategy yields great
benefit. These alternative models and goals for partitioning are described below.

1.5.1 Complex objectives

Traditional models assume that the total work (for a processor) is a linear sum
of work loads associated with each task assigned to a processor. Therefore, each
task is typically assigned a scalar number (weight) that describes the work (time)
associated with that task. In the multiconstraint case, each task may have multiple
weights associated with it.

However, there are applications where the total work is not a linear sum
of the weights associated with the unit tasks. A good example is sparse matrix
factorization (LU or Cholesky). Assuming each “task” is a nonzero in the matrix
A, we can balance the number of nonzeros in A between processors. Unfortunately,
during LU factorization, different processors get different amounts of fill in their
submatrix. The fill depends on the structure of the sparse matrix and is hard to
estimate in advance. Usually, there is no simple relation between the fill in L and
U and the number of nonzeros in A.

Pınar and Hendrickson [80] treat such cases as complex objectives and use
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an iterative strategy for load balancing. They start with a simple linear model,
and balance with respect to these weights using a traditional partitioner. After
the first distribution, they evaluate (or estimate) the true complex objective and
iterate using an incremental load-balancing algorithm like diffusion; the balance
with respect to the complex objective improves in each iteration.

Many other applications can have “complex objectives.” For example, each
processor may perform an iterative method where the number of iterations varies
and depends on local data. Incomplete factorizations also fall into the category of
complex objectives, except in the level-0 case where the nonzero pattern of L + U

is the same as the pattern of A and, thus, can be balanced in the traditional way.
Another load-balancing problem that fits this category is the problem of bal-

ancing computation and communication. Models like graph and hypergraph parti-
tioning attempt to balance only computation while minimizing total communication
volume. An alternative is to balance both computation and communication simul-
taneously. Another variation is to balance the weighted sum of computation and
communication for each processor, where the weight scaling is machine dependent.
This last model may be most realistic since, in practice, the slowest processor (after
doing both computation and communication) determines the overall speed. The
main difficulty in balancing computation and communication is that the communi-
cation requirements are not known until a data distribution has been computed. The
iterative approach described above can be applied naturally to this problem [78].

1.5.2 Flexibly assignable work

In the data-parallel programming model, the data distribution implicitly also dis-
tributes the computation among processors. However, the data distribution does
not always uniquely assign all the computations to processors. In many situations,
some work can be performed by any of a set of processors. For example, some
portions on the data may be replicated on multiple processors, any of which can
perform the work. Alternatively, tasks may involve multiple data items that reside
on different processors. These are both examples of what is called flexibly assignable
work [78, 81]. A simple example is molecular dynamics simulations, where a force
computation is required between particles that are close to each other. Typically,
geometric space is partitioned into regions and assigned to processors. Processors
compute forces between particles in the local region, but when two nearby parti-
cles reside on different processors, either processor could perform the computation.
This computation is flexibly assignable work. Another example is finite element
simulations where some of the computation is node-based while other parts are
element-based. A decomposition assigns either nodes or elements to processors;
there is then some flexibility in assigning the other entity.

A task assignment problem for flexibly assignable work was formally defined
in [81]. Their goal is to minimize the number of tasks assigned to the maximally
loaded processor. The authors propose two different solution methods. The first
approach is based on network flow. Formulating the task assignment problem as
a network model in which tasks “flow” from task nodes to processor nodes, they
minimize the maximum total flow into any processor node. The solution strategy
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uses parametric search with probes, where each probe operation attempts to find
a complete flow (i.e., a flow assigning every task to some processor) for which the
maximum total flow into any processor is less than the search parameter. Each
probe involves solving or updating a network flow problem (e.g., using augmenting
paths). Since network flow algorithms are difficult to parallelize, this method is
suitable when the task assignment may be solved in serial as a preprocessing step.

The second approach is applicable when the task assignment has to be done
in parallel. A continuous relaxation of the discrete problem can be formulated as
an optimization problem of the form min ‖Ax‖∞ s.t. Bx = d, where Ax represents
flow into processor nodes, Bx represents flow out of task nodes, and d is the vector
of task sizes. (Bx = d then enforces the requirement that every task is assigned
to some processor.) This formulation can be recast as a standard linear program
(LP), which is also difficult to solve in parallel. Instead, it is shown [81] that
minimizing the 2-norm is equivalent to minimizing the ∞-norm for the problem
in question; thus one has to solve only a constrained least-square problem of the
form min ‖Ax‖2 s.t. Bx = d. Such problems can be solved efficiently in parallel
using iterative methods like Gauss-Seidel. We remark that the 2-norm minimization
approach is similar to some diffusive load-balancing schemes [22].

1.5.3 Migration Minimization

The cost of moving data from an old decomposition to a new one is often higher than
the cost of computing the new decomposition. Not only must data be communicated
from the old to the new decomposition, but data structures must be rebuilt on
both the sending and receiving processors to account for data removed or added,
respectively. Many applications are interested in reducing this data migration cost,
through either clever application development or partitioning algorithms.

Within an application, clever techniques can be used to reduce data migration
costs. In adaptive finite element methods, for example, the amount of migrated data
can be reduced by balancing coarse meshes rather than fully refined meshes. One
technique, called predictive load balancing [34, 71], performs load balancing after
error indicators that guide refinement are computed but before actual refinement
occurs. Using the error indicators as weights approximating workloads after refine-
ment, the coarse elements are partitioned and migrated; then the mesh is refined.
Because data from the smaller mesh are moved, data migration costs are lower than
if the refined mesh were partitioned. In addition, the refinement phase can be better
balanced, and memory overflows can be avoided in cases where there is sufficient
global memory for refinement but insufficient local memory before balancing.

Appropriately selecting load-balancing methods can also reduce migration
costs. Incremental partitioners (e.g., RCB, SFC, diffusive graph partitioning) are
preferred when data migration costs must be controlled. The unified partitioning
strategy in ParMETIS computes both a multilevel graph decomposition (“scratch-
remap”) and a diffusive decomposition [88]; it then selects the better decomposition
in terms of load balance and migration costs.

Still greater reduction of migration costs can be achieved by explicitly control-
ling them within load-balancing algorithms. For example, the similarity matrix in
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PLUM [70] represents a maximal matching between an old decomposition and a new
one. Old and new partitions are represented by the nodes of a bipartite graph, with
edges between old and new partitions representing the amount of data they share.
A maximal matching, then, numbers the new partitions to provide the greatest
overlap between old and new decompositions and, thus, the least data movement.
Similar strategies have been adopted by ParMETIS [54] and Zoltan [24, 26].

Load-balancing objectives can also be adjusted to reduce data migration.
Heuristics for selecting objects to move to new processors can select those with
the lowest migration costs. They can also select a few heavily weighted objects to
satisfy balance criteria rather than many lightly weighted objects. Hu and Blake
compute diffusive graph-based decompositions to achieve load balance subject to a
minimization of data movement [47]. Berzins extends their idea by allowing greater
load imbalance when data movement costs are high [7, 8]; he minimizes a met-
ric combining load imbalance and data migration to reduce actual time-to-solution
(rather than load imbalance) on homogeneous and heterogeneous networks.

1.6 Beyond traditional architectures

Traditional parallel computers consist of up to thousands of processors, sharing a
single architecture and used in a dedicated way, connected by a fast network. Most
often these computers are custom-built and cost millions of dollars, making it diffi-
cult for any organizations except large research centers to own and maintain them.
As a result, simpler, more cost-effective parallel environments have been pursued.
In particular, clusters have become viable small-scale alternatives to traditional
parallel computers. Because they are smaller and are built from commodity parts,
they are relatively easy to acquire and run. Their computational capabilities can
also be increased easily through the addition of new nodes, although such additions
create heterogeneous systems when the new nodes are faster than the old ones. On
the other extreme, grid computing ties together widely distributed, widely varying
resources for use by applications. Accounting for the heterogeneity of both the
processors and the networks connecting them is important in partitioning for grid
applications. Moreover, both clusters and grids are shared environments in which
resource availability can fluctuate during a computation.

We describe two load-balancing strategies for such environments. The first,
resource-aware partitioning, uses dynamic information about the computing envi-
ronment as input to standard partitioning algorithms. The second, loop scheduling,
creates a very fine-grained decomposition of a computation, distributing work on
an as-needed basis to processors.

1.6.1 Resource-Aware Partitioning

In resource-aware partitioning, information about a computing environment is com-
bined with traditional partitioning algorithms (or variations on traditional algo-
rithms) to dynamically adjust processor workloads in the presence of non-homogeneous
and/or changing computing resources. One approach collects information about the
computing environment and processes it for use in partitioning algorithms designed
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for homogeneous systems. Static information about the computing environment
(e.g., CPU MHz ratings, network bandwidth, memory capacity per node) can be
provided in a file. Dynamic information must be obtained through monitoring of
CPU, network and memory usage. The Network Weather Service (NWS) [109],
for example, monitors network and CPU resources and uses mathematical models
to forecast resource availability over a given time. The Remos system [60] pro-
vides similar network monitoring without sending messages to determine network
capacity. Sinha and Parashar [94] use NWS to gather data about the state and
capabilities of available resources. They then compute the load capacity of each
node as a weighted sum of processing, memory, and communications capabilities,
and use standard partitioners to generate partitions with sizes proportional to their
load capacity. Similarly, the Dynamic Resource Utilization Model (DRUM) of Faik
et al. [27, 32] uses threads to non-intrusively monitor the computing environment;
available computational and communication “powers” are computed and used as
percentages of work to be assigned to processors by any standard partitioner. Min-
yard and Kallinderis [65] monitor process “wait times,” measuring the time CPUs
are idle while waiting for other processors to finish; they use the wait times as
weights in an octree partitioning scheme.

A second approach to resource-aware partitioning involves direct incorporation
of information about the computing environment into partitioning algorithms. For
example, Walshaw and Cross [103] incorporate processor and network information
directly into their multilevel graph partitioners. They accept network information
through a Network Cost Matrix (NCM), a complete graph with edges represent-
ing processor interconnections and edge weights represent the path length between
processors. The NCM is incorporated into the cost function used in their multi-
level graph partitioners. Teresco et al. [98, 97] use information from DRUM to
compute decompositions hierarchically. DRUM models a computing environment
as a tree, where the root represents the entire system, children represent high-level
subdivisions of the system (e.g., routers, switches), and leaves represent computa-
tion nodes (e.g., single processors or shared-memory processors). In hierarchical
partitioning, work is divided among children at a given level of the DRUM tree,
with percentages of work determined by the powers of the subtrees’ resources. The
work assigned to each subtree is then recursively partitioned among the nodes in
the subtrees. Different partitioning methods can be used in each level and subtree
to produce effective partitions with respect to the network; for example, graph or
hypergraph partitioners could minimize communication between nodes connected
by slow networks while fast geometric partitioners operate within each node.

1.6.2 Load-balancing via Dynamic Loop Scheduling

Load imbalances in scientific applications are induced not only by an application’s
algorithms or an architecture’s hardware, but also by system effects, such as data
access latency and operating system interference. The potential for these imbal-
ances to become predominant increases in non-traditional environments such as
networks of workstations (NOW), clusters of NOW, and clusters of shared-memory
processors. The previously discussed load-balancing approaches rely on applica-
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tion and system characteristics that change predictably during computations. For
example, adaptive finite element computations can be effectively load-balanced by
existing repartitioning algorithms that account for changes in the mesh and/or ar-
chitecture that occurred in previous iteration(s). However, these approaches lead to
sub-optimal results when the number of data points, the workload per data point,
and the underlying computational capabilities cannot be predicted well from an a
priori evaluation of the computation and architecture.

To address this problem, dynamic work-scheduling schemes can be used to
maintain balanced loads by assigning work to idle processors at run time. By de-
laying assignments until processors are idle, these schemes accommodate systemic
as well as algorithmic variances. A version of this scheme is available in the shared-
memory programming model OpenMP [20]. An interesting class of dynamic load-
balancing algorithms, well suited to the characteristics of scientific applications,
are derived from theoretical advances in scheduling parallel loop iterations with
variable running times. For example, Banicescu and her collaborators [1, 2, 3, 4],
have recently developed and evaluated dynamic loop-scheduling algorithms based
on probabilistic analysis called “factoring” and “fractiling.” These schemes accom-
modate imbalances caused by predictable phenomena (e.g., irregular data) as well as
unpredictable phenomena (e.g., data-access latency and operating system interfer-
ence). At the same time, they maintain data locality by exploiting the self-similarity
property of fractals. Loop iterates are executed in “chunks” of decreasing size, such
that earlier, larger chunks have relatively little overhead, and their unevenness in
execution time can be smoothed over by later, smaller chunks. The selection of
chunk sizes requires that chunks have a high probability of completion before the
optimal time. These schemes allow the scheduled batches of chunks (where each
batch contains P chunks run on P processors) to be fixed portions of those re-
maining. For highly heterogeneous computing environments, adaptively weighted
versions of these approaches account for the variability in processors’ performance.

1.7 Conclusion

Partitioning and load balancing continue to be active areas of research, with efforts
addressing new applications, new strategies, new partitioning goals, and new parallel
architectures. Applications such as clustering and contact detection for crash simu-
lations require enhancements and clever application of existing technologies. Linear
programming, circuit simulations, preconditioners, and adaptive methods require
richer models. Partitioners that account for processor and network capabilities and
availability are needed for effective decompositions on emerging architectures such
as clusters and grid computers. As described in this paper, many of these issues are
being addressed today, with even greater results expected in the future.

Looking forward, partitioning research will continue to be driven by new appli-
cations and architectures. These applications and architectures will be characterized
by even less structure than those commonly used today. For example, partitioning
extremely large, irregular datasets (e.g., web graphs, social networks, intelligence
databases, protein-protein interactions) is only beginning to be addressed. Agent-
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based computing can have complex, changing relationships between data and only
small amounts of computation associated with each agent, making fast, dynamic
partitioning with strict control of communication costs important. Differences be-
tween computing, memory access, and communication speeds may require parti-
tioners that are sensitive not only to processors and networks, but also to memory
hierarchies. In all, partitioning and load balancing are exciting and important areas
on the frontiers of scientific computing.
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